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Purpose: Diabetic retinopathy (DR) is one of the leading causes of preventable blindness globally.
Performing retinal screening examinations on all diabetic patients is an unmet need, and there are many undi-
agnosed and untreated cases of DR. The objective of this study was to develop robust diagnostic technology to
automate DR screening. Referral of eyes with DR to an ophthalmologist for further evaluation and treatment would
aid in reducing the rate of vision loss, enabling timely and accurate diagnoses.

Design: We developed and evaluated a data-driven deep learning algorithm as a novel diagnostic tool for
automated DR detection. The algorithm processed color fundus images and classified them as healthy
(no retinopathy) or having DR, identifying relevant cases for medical referral.

Methods: A total of 75 137 publicly available fundus images from diabetic patients were used to train and test
an artificial intelligence model to differentiate healthy fundi from those with DR. A panel of retinal specialists
determined the ground truth for our data set before experimentation. We also tested our model using the public
MESSIDOR 2 and E-Ophtha databases for external validation. Information learned in our automated method was
visualized readily through an automatically generated abnormality heatmap, highlighting subregions within each
input fundus image for further clinical review.

Main Outcome Measures: We used area under the receiver operating characteristic curve (AUC) as a metric
to measure the precisionerecall trade-off of our algorithm, reporting associated sensitivity and specificity metrics
on the receiver operating characteristic curve.

Results: Our model achieved a 0.97 AUC with a 94% and 98% sensitivity and specificity, respectively, on
5-fold cross-validation using our local data set. Testing against the independent MESSIDOR 2 and E-Ophtha
databases achieved a 0.94 and 0.95 AUC score, respectively.

Conclusions: A fully data-driven artificial intelligenceebased grading algorithm can be used to screen fundus
photographs obtained from diabetic patients and to identify, with high reliability, which cases should be referred
to an ophthalmologist for further evaluation and treatment. The implementation of such an algorithm on a global
basis could reduce drastically the rate of vision loss attributed to DR. Ophthalmology 2017;-:1e8 ª 2017 by the
American Academy of Ophthalmology

Supplemental material is available at www.aaojournal.org.
Diabetes affects more than 415 million people worldwide,
or 1 in every 11 adults.1 Diabetic retinopathy (DR) is a
vasculopathy that affects the fine vessels in the eye and is
a leading cause of preventable blindness globally.2 Forty
to 45% of diabetic patients are likely to have DR at some
point in their life; however, fewer than half of DR patients
are aware of their condition.3 Thus, early detection and
treatment of DR is integral to combating this worldwide
epidemic of preventable vision loss.

Although DR is prevalent today, its prevention remains
challenging. Ophthalmologists typically diagnose the pres-
ence and severity of DR through visual assessment of the
fundus by direct examination and by evaluation of color
photographs. Given the large number of diabetes patients
globally, this process is expensive and time consuming.4

Diabetic retinopathy severity diagnosis and early disease
detection also remain somewhat subjective, with
agreement statistics between trained specialists varying
substantially, as recorded in previous studies.5,6
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Furthermore, 75% of DR patients live in underdeveloped
areas, where sufficient specialists and the infrastructure for
detection are unavailable.7 Global screening programs have
been created to counter the proliferation of preventable eye
diseases, but DR exists at too large a scale for such
programs to detect and treat retinopathy efficiently on an
individual basis. Consequently, millions worldwide
continue to experience vision impairment without proper
predictive diagnosis and eye care.

To address the shortfalls of current diagnostic workflows,
automated solutions for retinal disease diagnoses from
screened color fundus images have been proposed in the
past.8,9 Such a tool could alleviate the workloads of trained
specialists, allowing untrained technicians to screen and
process many patients objectively, without dependence on
clinicians. However, previous approaches to automated DR
detection have significant drawbacks that hinder usability in
large-scale screenings. Because most of these algorithms
have been derived from small data sets of approximately 500
1http://dx.doi.org/10.1016/j.ophtha.2017.02.008
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fundus images obtained in isolated, singular clinical envi-
ronments, they struggle to detect DR accurately in large-
scale, heterogeneous real-world fundus data sets.8e10

Indeed, methods derived from a singular data set may not
generalize to fundus images obtained from other clinical
studies that use different types of fundus cameras, eye dila-
tion methods, or both, hindering clinical impact in real-world
workflows.8,9 Moreover, many of these algorithms depend
on manual feature extraction for DR characterization, aiming
to characterize prognostic anatomic structures in the fundus,
such as the optic disc or blood vessels, through detailed hand-
tuned features. Although these hand-tuned features may
perform well on singular fundus data sets, they again struggle
to characterize DR accurately in fundus images from varying
target demographics by overfitting to the original sample.
General-purpose features, such as Speeded Up Robust Fea-
tures (SURF) and Histogram of Oriented Gradients (HOG)
descriptors, have been investigated as a nonspecific method
for DR characterization, but these methods tend to underfit
and learn weaker features unable to characterize subtle
differences in retinopathy severity.11e13

We created a fully automated algorithm for DR detection
in red, green, and blue fundus photographs using deep
learning methods and addressed the above limitations in
previously published DR detection algorithms. Deep learning
recently has gained traction in a variety of technological
applications, including image recognition and semantic un-
derstanding, and has been used to characterize DR in the
past.14e17 In this study, we adapted scalable deep learning
methods to the domain of medical imaging, accurately clas-
sifying the presence of any DR in fundus images from a data
set of 75 137 DR images. Our algorithm used these images as
inputs and predicted a DR classification of 0 or 1. These
classes corresponded to no retinopathy and DR of any
severity (mild, moderate, severe, or proliferative DR). This
solution was fully automated and could process thousands of
heterogeneous fundus images quickly for accurate, objective
DR detection, potentially alleviating the need for the
resource-intensive manual analysis of fundus images across
various clinical settings and guiding high-risk patients for
referral to further care. In addition, all information learned in
our algorithmic pipeline was visualized readily through an
abnormality heatmap, intuitively highlighting subregions
within the classified image for further clinical review.

Methods

Figure 1A represents an abstraction of our algorithmic pipeline. We
compiled and preprocessed fundus images across various sources
into a large-scale data set. Our deep learning network learned
data-driven features from this data set, characterizing DR based on
an expert-labelled ground truth. These deep features were propa-
gated (along with relevant metadata) into a tree-based classification
model that output a final, actionable diagnosis.

Fundus Image Data set and Preprocessing

We derived our predictive algorithm from a data set of 75 137 color
fundus images obtained from the EyePACS public data set (Eye-
PACS LLC, Berkeley, CA).17 The images represented a
heterogeneous cohort of patients with all stages of DR. This data
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set contained a comprehensive set of fundus images obtained
with varying camera models from patients of different ethnicities,
amalgamated from many clinical settings.8,9 Each image was
associated with a diagnostic label of 0 or 1 referring to no reti-
nopathy or DR of any severity, respectively, determined by a panel
of medical specialists.

Because of the large-scale nature of our data set and the wide
number of image sources, images often demonstrated environ-
mental artifacts that were not diagnostically relevant. To account
for image variation within our data set, we performed multiple
preprocessing steps for image standardization before deep feature
learning. First, we scaled image pixel values to values in the range
of 0 through 1. Images then were downsized to a standard reso-
lution of 512�512 pixels by cropping the inner retinal circle and
padding it to a square.

To preprocess images further before learning, we used data set
augmentation methods to encode multiple invariances in our deep
feature learning procedure. Data set augmentation is a method of
applying image transformations across a sample data set to increase
image heterogeneity while preserving prognostic characteristics in
the image itself. One important principle of fundus diagnosis is that
disease detection is rotationally invariant; identification and char-
acterization of pathologic structures are determined locally relative
to major anatomic structures, regardless of orientation. We encoded
rotational invariance into our predictions by randomly rotating each
image before propagating these images into our model. By enforc-
ing similar predictions for randomly rotated images, we improved
our model’s ability to generalize and correctly classify fundus im-
ages of various orientations across different types of fundus imaging
devices without a loss of accuracy. Other important characteristics
were the color and brightness of the image. To encode invariance to
varying color contrast between images, we introduced brightness
adjustment with a random scale factor a per image, sampled from a
uniform distribution over [�0.3, 0.3], through equation 1,

y ¼ ðx�meanÞ � ð1þ aÞ (1)

and contrast adjustment with a random scale factor b per image,
sampled from a uniform distribution over [�0.2, 0.2], using
equation 2.

y ¼ ðx�meanÞ � ðbÞ (2)

These image transformations aimed to improve our model’s ability
to classify varieties of retinal images obtained in unique lighting
settings with different camera models.
Deep Feature Learning

Our novel approach to feature learning for DR characterization
leveraged deep learning methods for automated image character-
ization. Specifically, we used customized deep convolutional neural
networks for automated characterization of fundus photography
because of their wide applicability in many image recognition tasks
and robust performance on tasks with large ground truth data
sets.18,19 These networks used convolutional parameter layers to
learn iteratively filters that transform input images into hierarchical
feature maps, learning discriminative features at varying spatial
levels without the need for manually tuned parameters. These
convolutional layers were positioned successively, whereby each
layer transformed the input image, propagating output information
into the next layer. We used the principle of deep residual learning to
develop a custom convolutional network, learning discriminative
features for DR detection, as defined by equation 3,

xl ¼ convlðxl�1Þ þ xl�1#; (3)

where convl represents a convolutional layer l, which returns the
sum of both its output volume and the previous convolutional



Figure 1. Abstraction of the proposed algorithmic pipeline. A, Integration of our algorithm in a real diagnostic workflow. B, Abstraction of the deep neural
network. We extracted features from the global average pool layer for a total of 1024 deep features. Conv ¼ convolutional.
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layer’s output volume.20 These summations between convolutional
layers facilitated incremental learning of an underlying polynomial
function, allowing us to train deep networks with many parameter
layers for enhanced characterization of fundus images. A full
diagram of all layers in this residual network can be viewed in
Figure S2 (available at www.aaojournal.org). We separated
blocks of convolutional layers based on size, yielding 5 residual
blocks of 4, 6, 8, 10, and 6 layers, respectively. We increased
the number of filters in each convolutional block, yielding 32,
64, 128, 256, and 512 filters in successive blocks. Leading
convolutional layers in each block used a stride of 2 to transition
between spatial levels, where successive blocks analyze the input
image at reduced spatial dimensions in a coarse-to-fine fashion.
An abstraction of this feature learning architecture is represented
in Figure 1B. As is standard in deep convolutional networks,
each convolutional layer used batch normalization and the ReLU
nonlinearity function to ensure smooth training and prevent
overfitting, while using 2-class categorical cross-entropy loss for
class discrimination.21,22

Visualization Heatmap Embedding

To visualize the learning procedure of our network, we implanted a
convolutional visualization layer at the end of our network. This
layer was followed by an average pooling layer and a traditional
softmax layer, generating class probabilities for error optimiza-
tion.23 The visualization layer was functionally a convolutional
layer with a large width of 1024 filters, encapsulating all
3
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Figure 3. The mean receiver operating characteristic (ROC) curve derived
from 5-fold cross-validation. The dotted line represents the trade-off
resulting from random chance. The blue curve represents the model’s trade-
off, with the blue dot marking the threshold point yielding a sensitivity and
specificity of 94% and 98%, respectively. AUC ¼ area under the receiver
operating characteristic curve.
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previous information into a large layer at the end of the network.
Using this final layer, we generated a visualization heatmap by
applying equation 4, as detailed in Zhou et al24:

Mapc ¼ SkW
c
k � xk (4)

This visualization highlighted highly prognostic regions in the
input image for future review and analysis, potentially aiding real-
time clinical validation of automated diagnoses at the point of care.

Feature Extraction

We chose to extract learned features from the global average
pooling layer in our residual network. This layer represented the
average activations of each unit in the final visualization parameter
layer, yielding 1024 features. This layer generated the most
comprehensive, discriminative features because it averaged all
activations of the final, largest convolutional layer. We used these
features both to construct a visualization heatmap and to generate a
final image diagnosis through second-level classification models.

Metadata Appendage and Feature Vector
Construction

To enhance the diagnostic accuracy of our final prediction, we
appended multiple metadata features related to the original fundus
image to our feature vector. We defined 3 metadata variables useful
in characterizing the original image: original pixel height of the
image, original pixel width of the image, and field of view of the
original image. These variables augmented our input feature vector
into a final vector of 1027 features. Inserting image metadata was
important in accounting for environmental variables related to the
original fundus photograph before preprocessing, which may
influence the model’s predictions.

Decision Tree Classification Model

To generate a final diagnosis, we trained a second-level gradient
boosting classifier on our representative feature vector of 1027
values. Gradient boosting classifiers are tree-based classifiers
known for capturing fine-grained correlations in input features
based on intrinsic tree ensembles and bagging.25 We choose this
classifier because of its speed of implementation and robustness
against overfitting. This classifier was trained using the
categorical cross-entropy loss function, yielding the probability
that the input image was indeed pathologic.

Results

We tested the model using 5-fold stratified cross-validation on our
local data set of 75 137 images, preserving the percentage of
samples of each class per fold. This testing procedure trained 5
separate models, each holding out a distinct validation bucket of
approximately 15 000 images. Average metrics were derived from
5 test runs on respective held-out data by comparing the model’s
predictions with the gold standard determined by the panel of
specialists. A final, complete model was trained on all 75 137
images before external validation on public data set.

Local Cross-Validation Results

Our algorithm scored an average area under the receiver oper-
ating characteristic curve (AUC) of 0.97 during cross-validation.
This metric indicated excellent performance on a large-scale data
set. The algorithm also achieved an average 94% sensitivity and a
98% specificity. This statistic represented the highest point on the
receiver operating characteristic curve with minimal trade-off
4

between precision and recall. This receiver operating character-
istic curve is plotted in Figure 3, with the AUC representing the
AUC metric.

Public Data set Test Results and Prior Study
Performance Comparison

Because our data set was compiled independently, we also evalu-
ated the performance of our best-performing algorithm on 2
separate and independent data sets (MESSIDOR 2 and E-Ophtha)
for model evaluation and comparison to prior algorithms in the
field.26e28 These data sets contained fundus images with various
pathologic signs, indicating a wide variety of DR cases.

The public MESSIDOR 2 database contains 1748 fundus
images from 4 French eye institutions monitoring retinal com-
plications in diabetics. These images were graded already for the
existence of pathologic signs, separating images into healthy and
diseased. All images were used to make real clinical diagnoses in
their respective institutions and were released online in a de-
identified format for algorithm evaluation. This data set is the
largest public data set used in multiple prior studies for disease
detection, allowing for robust performance comparison between
our model and these published reports. Our algorithm achieved a
93% sensitivity and 87% specificity on this external data set, with
an AUC of 0.94, reporting comparable or better results in com-
parison with previously published studies on disease detection in
similar data set29e32 (Table 1). It is worth noting that our model
did not train on any MESSIDOR 2 fundus images before
validation, unlike previous studies that used this database alone
to create predictive models. In addition to evaluating our
model’s ability to predict the presence of DR, we also tested
the ability of our model to discern healthy images from those
with mild DR specifically, using a subset of 1368 healthy and
mild DR images from the MESSIDOR 2 database
(MESSIDOR 2 is provided by the LaTIM laboratory, Available
at: http://latim.univ-brest.fr; and the Messidor program
partners, Available at: http://messidor.crihan.fr). This data set
was important for evaluation as it provided deeper insight into
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Table 1. Average Sensitivity, Specificity, and Area under the
Receiver Operating Characteristic Curve Measures of No Diabetic
Retinopathy versus Any Stage of Diabetic Retinopathy Using the

MESSIDOR 2 Public Data set

Sensitivity Specificity

Area under the
Receiver Operating
Characteristic Curve

Our model 0.93 0.87 0.94
Antal et al (2014)29 0.90 0.91 0.99
Sánchez et al (2011)30 0.92 0.50 0.88
Seoud et al (2016)31 0.94 0.50 0.90
Roychowdhury
et al (2014)32

1.00 0.53 0.90

Gargeya and Leng � Deep Learning to Diagnose DR
our model’s potential as a preliminary screening method for mild
DR detection and its ability to detect fine microaneurysms in
retinal images, which make up less than 1% of the entire
image. Our algorithm achieved 74% sensitivity and 80%
specificity, with an overall AUC of 0.83.

The public E-Ophtha database (provided by the ANR-TEC-
SAN-TELEOPHTA project funded by the French Research
Agency [ANR]) contained 463 images separated into 268 healthy
images and 195 abnormal images. We evaluated our algorithm on
a subset of the E-Ophtha database consisting of 405 images of
healthy eyes and images with early DR. Like the MESSIDOR 2
mild DR subset, all pathologic images in this subset exhibited
only mild-stage DR with mild signs, specifically the presence of
microaneurysms or small hemorrhages. We achieved a 90%
sensitivity and a 94% specificity with this data set, with an AUC
of 0.95 (Table 2). These results show high potential for early
detection of mild DR symptoms, demonstrating the ability for
our network to classify early cases of DR. Figure 4 represents a
t-distributed stochastic neighbor embedding visualization of this
data set by our automated method, clearly showing 2 clusters of
fundus images and indicating the ability of our model to
discern images of mild retinopathy with fine microaneurysms
and small hemorrhages.33 Unfortunately, no previous studies
have published performance statistics using this data set for
normal versus abnormal evaluation because the data set is
relatively new.
Visualization Heatmap Analysis

In clinical use, interpreting the output of diagnosis-guiding soft-
ware is important for triaging referrals and focusing one’s clinical
examination. Toward that end, we created a heatmap visualization
Table 2. Summary of E

Sensitivity

EyePacs public data set 5-fold stratified
cross-validation of our model

0.94

Performance of our model on the MESSIDOR
2 data set (no DR vs. any stage of DR)

0.93

Performance of our model on the MESSIDOR
2 subset with mild DR (no DR vs. mild DR)

0.74

Performance of our model on the E-Ophtha
subset with mild DR (no DR vs. mild DR)

0.90

DR ¼ diabetic retinopathy.
method to represent intuitively the learning procedure of our deep
learning network.

Figure 5 ties the mathematical learning of the network to the
domain of clinical ophthalmology by highlighting the regions
important to our model’s prediction. The retinal image in
Figure 5A has highlighted regions of retinal hemorrhage and
neovascularization, as well as hard exudate, in the nasal and
temporal quadrants, indicating proliferative DR. The retinal
image in Figure 5B highlights retinal findings in the upper and
lower left quadrants. These features are what ophthalmologists
use to make a diagnosis, and the highlighted importance of these
regions corroborates the domain-guided learning procedure of
our model.

Model Runtime Performance Test

To evaluate the realistic performance of our software as a pre-
liminary screening tool, we found it important to evaluate the
runtime performance on common computer hardware found in an
average clinic. We tested the performance on 2 devices: a computer
desktop with an Intel Dual-Core Processor (Intel, Santa Clara, CA)
running at 2.4 GHz and an iPhone 5 (Apple Inc., Cupertino, CA).
The real-time runtime performance yielded an average of 6 and 8
seconds, respectively, per evaluated image, indicating broad us-
ability in a variety of medical screening situations.
Discussion

This study proposed a novel automated-feature learning
approach to DR detection using deep learning methods. It
provides a robust solution for DR detection within a large-
scale data set, and the results attained indicate the high ef-
ficacy of our computer-aided model in providing efficient,
low-cost, and objective DR diagnostics without depending
on clinicians to examine and grade images manually. Our
method also does not require any specialized, inaccessible,
or costly computer equipment to grade images; it can be run
on a common personal computer or smartphone with
average processors. In addition to image classification, our
pipeline accurately visualized abnormal regions in the input
fundus images, enabling clinical review and verification of
the automated diagnoses.

We validated our algorithm against multiple public da-
tabases, yielding competitive results without having trained
on fundus images from the same clinic. Our method deliv-
ered competitive results compared with multiple published
xperimental Results

Specificity
Area under the Receiver

Operating Characteristic Curve

0.98 0.97

0.87 0.94

0.80 0.83

0.94 0.95
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Figure 4. t-Distributed stochastic neighbor embedding visualization of the
E-Ophtha data set, clustered based on deep features. Red dots represent
healthy fundus images, whereas blue dots represent images with mild reti-
nopathy. This visualization represents the ability of our method objectively
to separate normal patients from those with early cases of diabetic reti-
nopathy for referral.
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methods for DR detection in the external MESSIDOR 2
database, showing the potential of an automated data-driven
system over manual counterparts. Our results with the
MESSIDOR 2 mild DR subset and E-Ophtha database were
particularly insightful, evaluating the capability of our
Figure 5. Visualization maps generated from deep features. A, Fundus heatmap o
temporal quadrants. B, Pathologic findings in the upper and lower left quadrants
examination after a patient is seen by a consultant ophthalmologist.
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method in distinguishing between normal and early cases of
DR that exhibit only fine microaneurysms and small hem-
orrhages. Although we were able to achieve an AUC of 0.95
on the E-Ophtha database, our algorithm struggled to
differentiate between healthy and very early cases of DR in
the MESSIDOR 2 database, missing cases that demon-
strated only a few, fine microaneurysms. Microaneurysm
detection is difficult even for human graders because of its
small appearance and poses an important limitation in future
DR detection systems for accurate, robust early detection.
We expect that a combination of manual features, targeting
specific characteristics of microaneurysms for mild DR
detection, with the robust potential of deep learning systems
to characterize accurately all other stages of DR without
confusion from brightness and capture artifacts, will yield
more robust results in future early DR detection studies.

Our experiments on held-out data indicate the potential
of deep learning systems to model and predict disease
accurately in fundus images. We found our performance to
corroborate the findings of a recent deep learning investi-
gation in automated DR assessment by Gulshan et al.34

Although we also evaluated our model using the same
external MESSIDOR 2 data set as Gulshan et al, that
group detected only referable DR, whereas we also
evaluated the ability of our algorithm to detect mild DR.
Given our results, there is a high potential for automated
machine learning systems to predict the presence of early-
stage DR, as well as referable DR.

It is also important to note the background ethnicity and
geographic location of the target demographics in the 3
analyzed data sets. Although our method trained only using
the EyePACS data set, consisting of images from the
geographic region of California, it could generalize suffi-
ciently to both the MESSIDOR 2 and E-Ophtha databases,
containing images of diabetic patients from France. Further
verlaid on a fundus image, highlighting pathologic regions in the nasal and
. These visualizations are generated automatically, locating regions for closer
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work may be needed to analyze the impact of geographic
variation within training and testing data sets on model
performance with regard to pigmentation of the retina and
prevalence of different DR severity stages, as well as the
impact of pupil dilation during the screening of target
demographics.

For proper clinical application of our method, further
testing and optimization of the sensitivity metric may be
necessary to ensure a minimum false-negative rate.
Because a false-negative result represents potentially
denying a patient necessary eye care, computer-aided
models for disease detection must prioritize this metric.
To increase our sensitivity metric further, it may be
important to control specific variances in our data set, such
as ethnicity or age, to optimize our algorithm for certain
demographics during clinical use. In the future, it also may
be important to investigate different types of common pa-
tient metadata, such as genetic factors, patient history,
duration of diabetes, hemoglobin A1C value, and other
clinical data that may influence a patient’s risk for reti-
nopathy. Adding this information into the classification
model may yield insightful correlations into underlying DR
risk factors outside of strictly imaging information, poten-
tially enhancing diagnostic accuracy.

Overall, our algorithm’s results show the potential of
automated feature-learning systems in streamlining current
retinopathy screening programs in a cost-effective and time-
efficient manner. The implementation of such an algorithm
on a global basis could drastically reduce the rate of vision
loss attributed to DR, improving clinical management and
creating a novel diagnostic workflow for disease detection
and referral.
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